题目内容

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:

(1);(2);(3)详见解析.

解析试题分析:(1)在函数定义域范围内求函数的极值,则极值点在内;(2)首先根据条件分离出变量,由转化成求的最小值(利用二次求导判单调性);(3)结合第(2)问构造出含
的不等关系,利用裂项相消法进行化简求和.
试题解析:(1)由题意              1分
所以                   2分
时,;当时,
所以上单调递增,在上单调递减,
处取得极大值.                      3分
因为函数在区间(其中)上存在极值,
所以,得.即实数的取值范围是.        4分
(2)由,令
.                           6分
,则
因为所以,故上单调递增.        7分
所以,从而
上单调递增,
所以实数的取值范围是.                    9分
(3)由(2) 知恒成立,
         11分
,        12分
所以,  ,
将以上个式子相加得:

.               14分
考点:1.函数极值、最值的求法;2.函数单调性的判定;3.恒成立问题的转化.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网