题目内容
【题目】如图,在平行四边形中,
,
,
为边
的中点,将
沿直线
翻折成
,设
为线段
的中点.则在
翻折过程中,给出如下结论:
①当不在平面
内时,
平面
;
②存在某个位置,使得;
③线段的长是定值;
④当三棱锥体积最大时,其外接球的表面积为
.
其中,所有正确结论的序号是______.(请将所有正确结论的序号都填上)
【答案】①③④
【解析】
①取DC的中点N,连接NM、NB,;MN∥A1D,NB∥DE,所以面MNB∥面A1DE,所以MB∥面A1DE;
②用反证法,假设存在某个位置,使DE⊥A1C,在△CDE中,由勾股定理易知,CE⊥DE,再由线面垂直的判定定理可知,DE⊥面A1CE,所以DE⊥A1E,与已知相矛盾;
③由①可知,可得MN、NB和∠MNB均为定值,在△MNB中,由余弦定理可知,MB2=MN2+NB2﹣2MNNBcos∠MNB,所以线段BM的长是定值;
④当体积最大时,平面平面
,可得
平面
,设外接球球心为
,半径为
,根据球的性质可知
,即可求出半径,计算球的表面积.
①取DC的中点N,连接NM、NB,如图,
则MN∥A1D,NB∥DE,且MN∩NB=N,A1D∩DE=D,所以面MNB∥面A1DE,所以MB∥面A1DE,即①正确;
且MN==定值;NB∥DE,且NB=DE=定值,所以∠MNB=∠A1DE=定值,
②假设存在某个位置,使DE⊥A1C.由AB=2AD=2,∠BAD=60°可求得DE=1,,所以CE2+DE2=CD2,即CE⊥DE,因为A1C∩CE=C,所以DE⊥面A1CE,因为A1E面A1CE,所以DE⊥A1E,与已知相矛盾,即②错误;
③由①可知,MN∥A1D且MN==定值;NB∥DE,且NB=DE=定值,所以∠MNB=∠A1DE=定值,由余弦定理得,MB2=MN2+NB2﹣2MNNBcos∠MNB,所以BM的长为定值,即③正确;
④当平面平面
时,三棱锥
体积最大,此时因为
,
是平面
与平面
的交线,所以
平面
,设正三角形
中心为
,棱锥外接球球心为
,半径为
,则
,设
与
交于
,连接
,
,如图:
易知,
,由题意可知
为边长为1的等边三角形,
,
则有,
,
所以,故球的表面积为
,即④正确.
故答案为:①③④.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:
健身族 | 非健身族 | 合计 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?
(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?
参考公式: ,其中
.
参考数据:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |