题目内容
【题目】如图,四棱锥的底面为菱形,,.平面平面,,,分别是,的中点.
(1)求证://平面;
(2)若直线与平面所成的角为,求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)取中点,连接,证明四边形是平行四边形,再利用线面平行判定定理,即可证得结论;
(2)分别以所在方向为轴,轴,轴的正方向建立空间直角坐标系,求出平面的一个法向量,设与平面所成角为,代入公式,即可得答案;
(1)取中点,连接,
分别是的中点,,且,
菱形中,是的中点,,且,
,且,
∴四边形是平行四边形,
,
又平面平面,
平面.
(2)取中点,连接,
.
∴平面平面,平面平面平面,
平面,
则为与平面所成的角,即.
在中,,
,
中,
.
如图,分别以所在方向为轴,轴,轴的正方向建立空间直角坐标系,
则,
.
设平面的一个法向量,
由得
令
设与平面所成角为,
,
∴直线与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】近年来,随着全球石油资源紧张、大气污染日益严重和电池技术的提高,电动汽车已被世界公认为21世纪汽车工业改造和发展的主要方向.为了降低对大气的污染和能源的消耗,某品牌汽车制造商研发了两款电动汽车车型和车型,并在黄金周期间同时投放市场.为了了解这两款车型在黄金周的销售情况,制造商随机调查了5家汽车店的销量(单位:台),得到下表:
店 | 甲 | 乙 | 丙 | 丁 | 戊 |
车型 | 6 | 6 | 13 | 8 | 11 |
车型 | 12 | 9 | 13 | 6 | 4 |
(1)若从甲、乙两家店销售出的电动汽车中分别各自随机抽取1台电动汽车作满意度调查,求抽取的2台电动汽车中至少有1台是车型的概率;
(2)现从这5家汽车店中任选3家举行促销活动,用表示其中车型销量超过车型销量的店的个数,求随机变量的分布列和数学期望.