题目内容
【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)及 ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.
【答案】
(1)
解: =cos2x
=
∵x∈[0, ],∴cosx>0,∴ =2cosx.
(2)
解:f(x)=cos2x﹣4λcosx=2cos2x﹣1﹣4λcosx,设t=cosx,
则∵x∈[0, ],∴t∈[0,1]
即y=f(x)=2t2﹣4λt﹣1=2(t﹣λ)2﹣1﹣2λ2.
①λ<0时,当且仅当t=0时,y取最小值﹣1,这与已知矛盾
②当0≤λ≤1时,当且仅当t=λ时,y取得最小值﹣1﹣2λ2,
由已知得 ,解得λ=
③当λ>1时,当且仅当t=1时,y取得最小值1﹣4λ.
由已知得 ,解得λ= ,这与λ>1相矛盾.
综上λ= 为所求.
【解析】(1)利用向量的数量积公式,结合差角的三角函数,角的范围,即可得出结论;(2)f(x)=cos2x﹣4λcosx=2cos2x﹣1﹣4λcosx,设t=cosx,可得y=f(x)=2t2﹣4λt﹣1=2(t﹣λ)2﹣1﹣2λ2 , 分类讨论,利用最小值是﹣ ,即可求λ的值.
【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(参考公式: = , = ﹣ )
(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程 .
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)