题目内容
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为。
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。
(1) P=P(B0·A1)+P(B0·A2)+P(B1·A2)= ;
(Ⅱ)ξ的分布列为: ξ 0 1 2 3 P
解析试题分析:(1)设Ai表示事件“一个试验组中,服用A有效的小鼠有i只" , i=0,1,2,
Bi表示事件“一个试验组中,服用B有效的小鼠有i只" , i="0,1,2,"
依题意有: P(A1)=2×× = , P(A2)= × = . P(B0)= × = ,
P(B1)=2× × = , 所求概率为: P=P(B0·A1)+P(B0·A2)+P(B1·A2)
= × + × + × =
(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3, ) . P(ξ="0)=(" )3= , P(ξ=1)=C31××()2=,
P(ξ=2)=C32×()2× = , P(ξ="3)=(" )3=
ξ的分布列为:
考点:本题主要考查离散性随机变量的分布列。ξ 0 1 2 3 P
点评:典型题,利用概率知识解决实际问题,在高考题中常常出现,这类题目解答的难点在于求随机变量的概率。
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
| 科目甲 | 科目乙 | 总计 |
第一小组 | 1 | 5 | 6 |
第二小组 | 2 | 4 | 6 |
总计 | 3 | 9 | 12 |
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.
(本小题满分12分)某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元,用表示经销一辆汽车的利润。
付款方工 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 | 10 |