题目内容
【题目】定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为( )
A. ①③B. ②④C. ①④D. ②③
【答案】B
【解析】
由题意,分析每一个选项,首先判断单调性,以及,再假设是
“追逐函数”,利用题目已知的性质,看是否满足,然后确定答案.
对于①,可得,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即 ,此时当k=100时,不存在,故①错误;
对于②,若是在上的“追逐函数”,此时,解得
,当时,,在是递增函数,若是“追逐函数”
则,即,
设函数
即,则存在,所以②正确;
对于③,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即 ,当k=4时,就不存在,故③错误;
对于④,当t=m=1时,就成立,验证如下:
,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,
即此时
取
即,故存在存在,所以④正确;
故选B
练习册系列答案
相关题目
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
年份(年) | |||||
维护费(万元) |
(I)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;
(II)求关于的线性回归方程;若该设备的价格是每台万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.
参考公式:用最小二乘法求线性回归方程的系数公式: