题目内容
【题目】四棱锥中,底面为直角梯形,,,,,,且平面平面.
(1)求证:;
(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2) 存在,.
【解析】
试题分析:(1)借助题设条件运用线面垂直的性质定理推证;(2)依据题设建立空间直角坐标系,运用空间向量的数量积公式探求.
试题解析:
证明:(1)过作,交于,连接.
,,,四边形是矩形,.,
,,.…………2分
,.又平面,平面,,
平面,……3分
平面,.………………………5分
(2)平面平面,平面平面,,
平面.
以为原点,以,,为坐标轴建立空间直角坐标系,…………………7分
如图所示:则,,假设存在点使得二面角的大小为,则,.
设平面的法向量为,则.
,令得.………9分
平面,
为平面的一个法向量.…………………10分
.……………………11分
解得..…………………12分
练习册系列答案
相关题目