题目内容
【题目】已知函数f(x)=
(1)当a≥1时,求f(x)在[0,e](e为自然对数的底数)上的最大值;
(2)对任意的正实数a,问:曲线y=f(x)上是否存在两点P,Q,使得△POQ(O为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
【答案】
(1)解:∵f(x)= ,
当0≤x<1时,f′(x)=﹣3x2+2x=﹣3x(x﹣ ),
令f'(x)>0,解得:0≤x< ,
令f′(x)<0,解得: <x<1,
故f(x)在[0, )递增,在( ,1)递减,
而f( )= ,
∴f(x)在区间[0,1)上的最大值为 ,
1≤x<e时,f(x)=alnx,f′(x)= >0,
f(x)在[1,e]递增,f(x)max=f(e)=a≥1,
综上f(x)在[0,e]的最大值是a
(2)解:曲线y=f(x)上存在两点P、Q满足题设要求,则点P,Q只能在y轴的两侧,
不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1,
∵△POQ是以O为直角顶点的直角三角形,
∴ =0,即﹣t2+f(t)(t3+t2)=0.(1)
是否存在两点P、Q等价于方程(1)是否有解.
若0<t<1,则f(t)=﹣t3+t2,代入(1)式得,
﹣t2+(﹣t3+t2)(t3+t2)=0,即t4﹣t2+1=0,
而此方程无实数解,因此t>1.
∴f(t)=alnt,代入(1)式得,﹣t2+(alnt)(t3+t2)=0,
即 =(t+1)lnt. (*),
考察函数在h(x)=(x+1)lnx(x≥1),
则h′(x)=lnx+ +1>0,
∴h(x)在[1,+∞)上单调递增,∵t>1,∴h(t)>h(1)=0,
当t→+∞时,h(t)→+∞,∴h(t)的取值范围是(0,+∞).
∴对于a>0,方程(*)总有解,即方程(1)总有解.
因此对任意给定的正实数a,曲线y=f(x)上总存在两点P、Q,
使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上
【解析】(1)当0≤x<e时,求导函数,可得f(x)在区间[0,e]上的最大值;(2)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P、Q的坐标,由此入手能得到对任意给定的正实数a,曲线y=f(x)上存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.