题目内容
【题目】选修4—4:坐标系与参数方程
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标().
【答案】(Ⅰ);(Ⅱ)
【解析】试题分析:(1) 先根据同角三角函数关系cos2t+sin2t=1消参数得普通方程:(x-4)2+(y-5)2=25 ,再根据将普通方程化为极坐标方程: (2)将代入得得,也可利用直角坐标方程求交点,再转化为极坐标
试题解析: (1)∵C1的参数方程为
∴(x-4)2+(y-5)2=25(cos2t+sin2t)=25,
即C1的直角坐标方程为(x-4)2+(y-5)2=25,
把代入(x-4)2+(y-5)2=25,
化简得: .[Z.X.X.K]
(2)C2的直角坐标方程为x2+y2=2y,C1的直角坐标方程为(x-4)2+(y-5)2=25,
∴C1与C2交点的直角坐标为(1,1),(0,2).
∴C1与C2交点的极坐标为.
练习册系列答案
相关题目