题目内容
【题目】集合、为的一个等浓二分划(即,,且.记集合中所有数的积为,集合中所有数的积为,称为的等浓二分划的特征数.证明:
(1)集合的等浓二分划的特征数一定为合数;
(2)若等浓二分划的特征数不为2的倍数,则该特征数为的倍数.
注:有限集合的元素个数简记为.
【答案】(1)见解析;(2)
【解析】
(1)集合中的2014个数恰有1007个偶数,1007个奇数.
若全部偶数不全在、的同一个集合中,则、每个集合中均含偶数.
于是,与被2整除.
因此,被2整除.
若全部偶数均在、的一个集合中,不妨设集合的1007个元素全为偶数,则集合的1007个元素全为奇数.
显然,集合中包含偶数6,集合中包含奇数3.
于是,与均为3的倍数.
因此,被3整除.
因为,所以,为合数.
(2)已知不为2的倍数.则为奇数当且仅当、一个为奇数一个为偶数.
不妨设为奇数.则集合的元素只能是这1007个奇数.
注意到,.
在集合中含有因数31的数记为.
因为中含两个因数31,所以,集合中含因数31的共有34个.
从而,在集合中型的数中除去,含有因数13的数超过34个.
类似地,在集合中型的数中除去和,含有因数5的数远远超过34个.
于是,.
集合的元素只能是这1007个偶数.
注意到,.
在集合中含有因数31的数记为
.
因为中含两个因数31,所以,集合中含因数31的共有33个.
从而,在集合中型或型的数含的因数5和13各自均多于33个.
于是,.
因此,,即.
练习册系列答案
相关题目