题目内容
【题目】某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.
(1)栽种多少年后,该树木的高度是栽种时高度的8倍;
(2)该树木在栽种后哪一年的增长高度最大.
【答案】(1)栽种年后,该树木的高度是栽种时高度的倍;(2)第年的增长高度最大.
【解析】
试题(1)由题中所给条件,运用待定系数法不难求出,进而确定出函数,其中.由,运用解方程的方法即可求出,问题得解; (2)由前面(1)中已求得,可表示出第n年的增长高度为 ,这是一个含有较多字母的式子,这也中本题的一个难点,运用代数化简和整体思想可得:,观察此式特征能用基本不等式的方法进行求它的最值,即:,成立的条件为 当且仅当时取等号,即可求出.
试题解析: (1)由题意知.
所以解得. 4分
所以,其中.
令,得,解得,
所以.
所以栽种9年后,该树木的高度是栽种时高度的8倍. 6分
(2)由(1)知.
第n年的增长高度为 . 9分
所以
12分
.
当且仅当,即时取等号,此时.
所以该树木栽种后第5年的增长高度最大. 14分
【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表: 甲公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答下列问题:
(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.