题目内容
【题目】已知焦点在轴上的抛物线过点,椭圆的两个焦点分别为,,其中与的焦点重合,过点与的长轴垂直的直线交于,两点,且,曲线是以坐标原点为圆心,以为半径的圆.
(1)求与的标准方程;
(2)若动直线与相切,且与交于,两点,求的面积的取值范围.
【答案】(1) 的标准方程为.的标准方程为.(2)
【解析】
(1)先由已知设抛物线的方程为,根据抛物线过点,即可求出抛物线方程,得出坐标,再由题意可得,进而可求出椭圆方程;又曲线是以坐标原点为圆心,以为半径的圆,根据坐标坐标得出的值,即可写出圆的标准方程;
(2)先由直线与相切,得圆心到直线的距离为1,因此,根据题意分类讨论:当直线的斜率不存在和斜率存在两种情况,结合韦达定理和弦长公式,分别求出的范围即可.
解:(1)由已知设抛物线的方程为,
则,解得,即的标准方程为.
则,不妨设椭圆的方程为,
由,得,所以,
又,所以,,
故的标准方程为.
易知,所以的标准方程为.
(2)因为直线与相切,所以圆心到直线的距离为1.所以.
当直线的斜率不存在时,其方程为,易知两种情况所得到的的面积相等.
由,得.
不妨设,,则,
此时.
当直线的斜率存在时,设其方程为,
则,即.
由,得,
所以 恒成立.
设,,
则,.
所以.
令,则,
所以
,
令,则,
易知区间上单调递减,所以.
综上,的面积的取值范围为.
【题目】某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:
分组 | [160,166) | [166,172) | [172,178) | [178,184) | [184,190] |
人数 | 3 | 10 | 24 | 10 | 3 |
这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):
(1)求,;
(2)给出正态分布的数据:,.
(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;
(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.