题目内容
如图,直棱柱ABC-中,D,E分别是AB,BB1的中点,=AC=CB=AB.(Ⅰ)证明: //平面;(Ⅱ)求二面角D--E的正弦值.
(Ⅰ)见解析(Ⅱ)
解析
如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.(I)求证:平面PBD丄平面PAC;(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.
如图,在五面体中,四边形是正方形,平面∥(1)求异面直线与所成角的余弦值;(2)证明:平面;(3)求二面角的正切值。
在如图所示的几何体中,四边形是正方形,⊥平面,∥,、、分别为、、的中点,且.(1)求证:平面⊥平面;(2)求三棱锥与四棱锥的体积之比.
如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.
如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.
如图,在三棱锥中,平面平面,,. 过点作,垂足为,点,分别为棱,的中点.求证:(1)平面平面;(2).
如图,菱形的边长为6,,.将菱形沿对角线折起,得到三棱锥 ,点是棱的中点,.(1)求证:;(2)求三棱锥的体积.
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3,且设点O是AB的中点。(1)证明:OC∥平面A1B1C1;(2)求异面直线OC与AlBl所成角的正切值。