题目内容

定义在R上的单调函数满足且对任意都有
(1)求证为奇函数;
(2)若对任意恒成立,求实数的取值范围.

(1)证明:利用“赋值法”,确定f(0)=0,再
计算f(x)+f(-x)=0.
(2) t=3>0,换元后,问题等价于t-(1+k)t+2>0
假设,当时,对任意恒成立.

解析试题分析:
思路分析:(1)证明:利用“赋值法”,确定f(0)=0,再
计算f(x)+f(-x)=0.
(2) t=3>0,换元后,问题等价于t-(1+k)t+2>0
假设,应用二次函数的图象和性质进一步求解。
(1)证明:f(x+y)=f(x)+f(y)    (x,y∈R), ①
令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,
则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,
所以f(x)是奇函数.
(2)解:>0,即f(3)>f(0),又在R上是单调函数,
所以在R上是增函数
又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2),
∴ k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立.
令t=3>0,问题等价于t-(1+k)t+2>0
对任意t>0恒成立.
,其对称轴
时,符合题意;
时,对任意恒成立
解得
综上所述,当时,对任意恒成立.
考点:函数的单调性,指数函数的性质,二次函数的图象和性质。
点评:中档题,本题涉及抽象函数问题,一般要考虑应用“赋值法”,确定所需数据。本题通过换元,将问题转化成二次函数的图象和性质应用问题,具有“化生为熟”的示范作用。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网