题目内容
甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求),每小时可获得利润是元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
(1) (2) 时,元
解析
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
定义在R上的单调函数满足且对任意都有.(1)求证为奇函数;(2)若对任意恒成立,求实数的取值范围.
已知函数( 是自然对数的底数)的最小值为.(Ⅰ)求实数的值;(Ⅱ)已知且,试解关于的不等式 ;(Ⅲ)已知且.若存在实数,使得对任意的,都有,试求的最大值.
已知函数.(1)求的单调区间;(2)当时,判断和的大小,并说明理由;(3)求证:当时,关于的方程:在区间上总有两个不同的解.
已知函数是二次函数,不等式的解集为,且在区间上的最小值是4.(Ⅰ)求的解析式; (Ⅱ)设,若对任意的,均成立,求实数的取值范围.
已知函数,若f(x)在x=1处的切线方程为3x+y-6=0(Ⅰ)求函数f(x)的解析式;(Ⅱ)若对任意的,都有f(x)成立,求函数g(t)的最值
已知m∈R,对p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“p且q”为假命题、“p或q”为真命题的实数m的取值范围.
已知,函数。(I)记求的表达式;(II)是否存在,使函数在区间内的图像上存在两点,在该两点处的切线相互垂直?若存在,求的取值范围;若不存在,请说明理由。