题目内容

1.已知数列{an}的前n项和Sn=n2+2n,数列{bn}满足3nbn+1=(n+1)an+1-nan,且b1=3.
(1)求an,bn
(2)若Tn为数列{bn}的前n项和,求Tn,并求满足Tn<7时n的最大值..

分析 (1)通过当n≥2时利用an=Sn-Sn-1,进而计算可得结论;
(2)通过(1)利用错位相减法计算可知Tn=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,问题转化为求满足$\frac{4n+5}{{3}^{n-1}}$>1的n的最大值,进而计算可得结论.

解答 解:(1)∵Sn=n2+2n,
∴当n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
又∵a1=1+2=3满足上式,
∴an=2n+1,
∵3nbn+1=(n+1)an+1-nan
∴bn+1=$\frac{1}{{3}^{n}}$[(n+1)an+1-nan]=$\frac{1}{{3}^{n}}$[(n+1)(2n+3)-n(2n+1)]=(4n+3)•$\frac{1}{{3}^{n}}$,
又∵b1=3满足上式,
∴bn=(4n-1)•$\frac{1}{{3}^{n-1}}$;
(2)由(1)可知,Tn=3•1+7•$\frac{1}{3}$+11•$\frac{1}{{3}^{2}}$+…+(4n-1)•$\frac{1}{{3}^{n-1}}$,
$\frac{1}{3}$Tn=3•$\frac{1}{3}$+7•$\frac{1}{{3}^{2}}$+…+(4n-5)•$\frac{1}{{3}^{n-1}}$+(4n-1)•$\frac{1}{{3}^{n}}$,
错位相减得:$\frac{2}{3}$Tn=3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$,
∴Tn=$\frac{3}{2}$[3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{3}{2}$[3+4•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,
∵Tn<7,
∴$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$<7,即$\frac{4n+5}{{3}^{n-1}}$>1,
记f(x)=$\frac{4x+5}{{3}^{x-1}}$,则f′(x)=$\frac{4•{3}^{x-1}-ln3•(4x+5)•{3}^{x-1}}{{3}^{2(x-1)}}$,
显然,当x≥1时,f′(x)<0,即f(x)在区间[1,+∞)上单调递减,
又∵f(3)=$\frac{17}{9}$,f(4)=$\frac{7}{9}$,
∴满足Tn<7时n的最大值为3.

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网