题目内容

6.若$θ=[\frac{π}{4},\frac{π}{2}]$,sin2θ=$\frac{4}{5}$,则tanθ=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.2D.$\frac{1}{2}$

分析 已知等式利用二倍角的正弦函数公式化简,结合sin2θ+cos2θ=1,根据θ的范围,求出sinθ与cosθ的值,即可确定出tanθ的值.

解答 解:由sin2θ=$\frac{4}{5}$,得到2sinθcosθ=$\frac{4}{5}$,即sinθcosθ=$\frac{2}{5}$,
与sin2θ+cos2θ=1联立,结合θ∈[$\frac{π}{4}$,$\frac{π}{2}$],
解得:sinθ=$\frac{2\sqrt{5}}{5}$,cosθ=$\frac{\sqrt{5}}{5}$,
则tanθ=2,
故选:C.

点评 此题考查了同角三角函数基本关系的运用,以及二倍角的正弦函数公式,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网