题目内容
3.a,b,c为△ABC三边之长,若(a+b+c)(a+b-c)=ab,则△ABC的最大角为( )A. | 30° | B. | 120° | C. | 90° | D. | 60° |
分析 已知的等式左边利用平方差公式及完全平方公式化简,整理后得到关系式,再利用余弦定理表示出cosC,即可得到结论.
解答 解:∵(a+b-c)(a+b+c)=(a+b)2-c2=a2+b2-c2+2ab=ab,
∴a2+b2-c2=-ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-ab}{2ab}$=-$\frac{1}{2}$,
∵C为三角形内角,
∴C=120°为钝角.
∴C为最大角,
故选:B
点评 本题主要考查余弦定理的应用,化简条件结合余弦定理是解决本题的关键.
练习册系列答案
相关题目
13.复数z满足(z+2)(1-i)=2(i为虚数单位),则z=( )
A. | 1-i | B. | 1+i | C. | -1+i | D. | -1-i |
12.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
下面的临界值表供参考:
则根据以下参考公式可得随机变量K2的值(保留三位小数),你认为有多大的把握认为喜爱打篮球与性别有关.(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15[ | 25 |
合计 | 30 | 20 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |