题目内容
已知,函数.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.
(1);(2).
试题分析:(1)根据题意,若不等式对任意恒成立,参编分离后即可得:,从而问题等价于求使对于任意恒成立的的范围,而,当且仅当时,“=”成立,故实数的取值范围是;(2)由题意可得为二次函数,其对称轴为,因此当时,可得其值域应为,从而结合条件的定义域和值域都是可得关于的方程组,即可解得.
试题解析:(1)∵,∴可变形为:,而,当且仅当时,“=”成立,∴要使不等式对任意恒成立,只需,即实数的取值范围是;
(2)∵,∴其图像对称轴为,根据二次函数的图像,可知在上单调递减,∴当时,其值域为,又由的值域是,
∴.
练习册系列答案
相关题目