题目内容
已知函数f(x)=ln(x+1)-x2-x.
(1)若关于x的方程f(x)=-
x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2+
+
+…+
>ln(n+1)都成立.
(1)若关于x的方程f(x)=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321550368.png)
(2)证明:对任意的正整数n,不等式2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321565385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321581370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321596489.png)
(1) ln 3-1≤b<ln 2+
. (2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321612338.png)
(1)f(x)=ln(x+1)-x2-x,由f(x)=-
x+b,得ln(x+1)-x2+
x-b=0,
令φ(x)=ln(x+1)-x2+
x-b,则f(x)=-
x+b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根,φ′(x)=
-2x+
=
,
当x∈[0,1)时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;
当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减.
依题意有
解得ln 3-1≤b<ln 2+
.
(2)证明:方法一,f(x)=ln(x+1)-x2-x的定义域为{x|x>-1},则有f′(x)=
,
令f′(x)=0,得x=0或x=-
(舍去),
当-1<x<0时,f′(x)>0,f(x)单调递增;
当x>0时,f′(x)<0,f(x)单调递减.
∴f(0)为f(x)在(-1,+∞)上的最大值.
∴f(x)≤f(0),故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立).
对任意正整数n,取x=
>0得,ln
<
+
,
∴ln
<
.
故2+
+…+
≥ln 2+ln
+…+ln
=ln(n+1).
方法二,数学归纳法证明:
当n=1时,左边=
=2,右边=ln(1+1)=ln 2,显然2>ln 2,不等式成立.
假设当n=k(k∈N*,k≥1)时,2+
>ln(k+1)成立,
则当n=k+1时,有2+
+ln(k+1).
做差比较:ln(k+2)-ln(k+1)-
=ln
-
=ln
-
.
构建函数F(x)=ln(1+x)-x-x2,x∈(0,1),
则F′(x)=
<0,
∴F(x)在(0,1)上单调递减,∴F(x)<F(0)=0.
取x=
(k≥1,k∈N*),ln
-
<F(0)=0.
即ln(k+2)-ln(k+1)-
<0,
亦即
+ln(k+1)>ln(k+2),
故n=k+1时,有2+
+ln(k+1)>ln(k+2),不等式也成立.
综上可知,对任意的正整数,不等式都成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321550368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321628388.png)
令φ(x)=ln(x+1)-x2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321628388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321550368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321674382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321628388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321737843.png)
当x∈[0,1)时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;
当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减.
依题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353217522021.png)
解得ln 3-1≤b<ln 2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321612338.png)
(2)证明:方法一,f(x)=ln(x+1)-x2-x的定义域为{x|x>-1},则有f′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321784694.png)
令f′(x)=0,得x=0或x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321628388.png)
当-1<x<0时,f′(x)>0,f(x)单调递增;
当x>0时,f′(x)<0,f(x)单调递减.
∴f(0)为f(x)在(-1,+∞)上的最大值.
∴f(x)≤f(0),故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立).
对任意正整数n,取x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321815348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321846668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321815348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321877414.png)
∴ln
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321846668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321596489.png)
故2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321924531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321596489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321628388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321971431.png)
方法二,数学归纳法证明:
当n=1时,左边=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321971385.png)
假设当n=k(k∈N*,k≥1)时,2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322002831.png)
则当n=k+1时,有2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353220181338.png)
做差比较:ln(k+2)-ln(k+1)-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322018615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322033536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322018615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322064730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322080893.png)
构建函数F(x)=ln(1+x)-x-x2,x∈(0,1),
则F′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035321784694.png)
∴F(x)在(0,1)上单调递减,∴F(x)<F(0)=0.
取x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322111403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322064730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322080893.png)
即ln(k+2)-ln(k+1)-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322018615.png)
亦即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035322018615.png)
故n=k+1时,有2+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240353220181338.png)
综上可知,对任意的正整数,不等式都成立.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目