题目内容
【题目】如图,在四棱锥PABCD中,底面ABCD是矩形,点E在棱PC上异于点P,,平面ABE与棱PD交于点F
求证:;
若,求证:平面平面ABCD.
【答案】(1)见解析(2)见解析
【解析】
分析:(1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.(2)结合(1)可证AB⊥AF,AB⊥平面PAD,从而得平面PAD⊥平面ABCD.
证明:(1) 因为四边形ABCD是矩形,
所以AB//CD.
又AB平面PDC,CD平面PDC,
所以AB//平面PDC,
又因为AB平面ABE,平面ABE∩平面PDC=EF,
所以AB//EF.
(2) 因为四边形ABCD是矩形,
所以AB⊥AD.
因为AF⊥EF,(1)中已证AB//EF,
所以AB⊥AF,
又AB⊥AD,
由点E在棱PC上(异于点C),所以F点异于点D,
所以AF∩AD=A,
AF,AD平面PAD,
所以AB⊥平面PAD,
又AB平面ABCD,
所以平面PAD⊥平面ABCD.
练习册系列答案
相关题目
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式: ,,其中为样本平均值。
参考数据: .