题目内容
【题目】正项数列的前项和为,,且,(为常数).
(1)求证:数列为等比数列;
(2)若,且,对任意,都有,求的值;
(3)若,是否存在正整数,且,使得,,三项成等比数列?
【答案】(1)证明见解析;(2);(3)不存在,说明见解析.
【解析】
(1)利用,及作差可证;
(2)对进行讨论,结合等比数列求和公式可得;
(3)先假设存在,得出,结合二次函数知识证明,从而得出结论.
(1)因为,所以当时,,
两式相减可得,即;
因为,,所以,所以数列是以为首项,2为公比的等比数列.
(2)因为,,当时,
当时,
所以.
(3)当时,由(1)可得,假设,,三项成等比数列,
则,,
设,所以,
所以,
记是开口向上的二次函数,对称轴为
且,
所以
综上不存在正整数,且,使得,,三项成等比数列.
【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
【题目】2019年,中华人民共和国成立70周年,为了庆祝建国70周年,某中学在全校进行了一次爱国主义知识竞赛,共1000名学生参加,答对题数(共60题)分布如下表所示:
组别 | ||||||
频数 | 10 | 185 | 265 | 400 | 115 | 25 |
答对题数近似服从正态分布,为这1000人答对题数的平均值(同一组数据用该组区间的中点值作为代表).
(1)估计答对题数在内的人数(精确到整数位).
(2)学校为此次参加竞赛的学生制定如下奖励方案:每名同学可以获得2次抽奖机会,每次抽奖所得奖品的价值与对应的概率如下表所示.
获得奖品的价值(单位:元) | 0 | 10 | 20 |
概率 |
用(单位:元)表示学生甲参与抽奖所得奖品的价值,求的分布列及数学期望.
附:若,则,,.