题目内容
数列{an}的前n项和为Sn=
(4n-t),n∈N*.
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=1og4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
1 | 3 |
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=1og4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
分析:(Ⅰ)依题意,可求得a1,a2,a3,由a1,a2,a3成等比数列即可求得t的值;
(Ⅱ)在(Ⅰ)的结论下,易求bn=n,an=4n-1,利用分组求和法即可求得数列{cn}的前n项和Tn.
(Ⅱ)在(Ⅰ)的结论下,易求bn=n,an=4n-1,利用分组求和法即可求得数列{cn}的前n项和Tn.
解答:解:(Ⅰ)∵Sn=
(4n-t),
∴a1=
(4-t),
∴a2=S2-a1=
(42-t)-
(4-t)=4,
a3=S3-S2=
(43-t)-
(42-t)=
(43-42)=16,
∵a1,a2,a3成等比数列,
∴a22=a1•a3,即16=
(4-t)×16,
解得t=1,
∴t=1时,Sn=
(4n-1),
∴Sn+1=
(4n+1-1),
∴an+1=Sn+1-Sn=
(4n+1-4n)=4n,
∴
=4,即t=1时,数列{an}是公比为4的等比数列;
(Ⅱ)∵{an}是首项为1,公比为4的等比数列,
∴an=4n-1,an+1=4n,
∴bn=1og4an+1=log44n=n,
∴cn=an+bn=4n-1+n,
∴Tn=c1+c2+…+cn
=(1+4+42+…+4n-1)+(1+2+..+n)
=
-
=
(4n-1)-
=
-
-
.
1 |
3 |
∴a1=
1 |
3 |
∴a2=S2-a1=
1 |
3 |
1 |
3 |
a3=S3-S2=
1 |
3 |
1 |
3 |
1 |
3 |
∵a1,a2,a3成等比数列,
∴a22=a1•a3,即16=
1 |
3 |
解得t=1,
∴t=1时,Sn=
1 |
3 |
∴Sn+1=
1 |
3 |
∴an+1=Sn+1-Sn=
1 |
3 |
∴
an+1 |
an |
(Ⅱ)∵{an}是首项为1,公比为4的等比数列,
∴an=4n-1,an+1=4n,
∴bn=1og4an+1=log44n=n,
∴cn=an+bn=4n-1+n,
∴Tn=c1+c2+…+cn
=(1+4+42+…+4n-1)+(1+2+..+n)
=
1-4n |
1-4 |
n(1+n) |
2 |
=
1 |
3 |
n(1+n) |
2 |
=
4n |
3 |
n(1+n) |
2 |
1 |
3 |
点评:本题考查数列的求和,考查等比关系的确定,求得t=1是关键,考查分组求和,突出考查灵活转化与运算能力,属于中档题.
练习册系列答案
相关题目