ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒ|F1F2|=2$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýÍÖÔ²ÓÒ½¹µãF2×÷Ö±Ïßl½»ÍÖÔ²MÓÚA£¬BÁ½µã
£¨1£©µ±Ö±ÏßlµÄбÂÊΪ1ʱ£¬Çó¡÷AF1BµÄÃæ»ýS
£¨2£©ÍÖÔ²ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ¨OΪ×ø±êԵ㣩£¿Èô´æÔÚ£¬Çó³öËùÓеĵãPµÄ×ø±êÓëÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©£¨1£©ÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉ¡÷AF1BµÄÃæ»ýS=$\frac{1}{2}$|F1F2|•|y1-y2|£¬¼ÆËã¼´¿ÉµÃµ½Ãæ»ý£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬ÇóµÃPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉµÃµ½k£¬¼´¿ÉÅжÏPµÄ´æÔÚºÍÖ±Ïߵķ½³Ì£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ2c=2$\sqrt{3}$£¬¼´c=$\sqrt{3}$£¬
e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬¿ÉµÃa=2£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¼´ÓÐÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©£¨1£©ÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬
´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬¿ÉµÃ5y2+2$\sqrt{3}$y-1=0£¬
y1+y2=-$\frac{2\sqrt{3}}{5}$£¬y1y2=-$\frac{1}{5}$£¬
Ôò¡÷AF1BµÄÃæ»ýS=$\frac{1}{2}$|F1F2|•|y1-y2|=$\frac{1}{2}$•2$\sqrt{3}$•$\sqrt{£¨-\frac{2\sqrt{3}}{5}£©^{2}+\frac{4}{5}}$=$\frac{4\sqrt{6}}{5}$£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®
ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2-8$\sqrt{3}$k2x+12k2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬
x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$£¬
y1+y2=k£¨x1+x2-2$\sqrt{3}$£©=k£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$-2$\sqrt{3}$£©=$\frac{-2\sqrt{3}k}{1+4{k}^{2}}$£¬
¼´ÓÐP£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬$\frac{-2\sqrt{3}k}{1+4{k}^{2}}$£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{48{k}^{4}}{£¨1+4{k}^{2}£©^{2}}$+$\frac{12{k}^{2}}{£¨1+4{k}^{2}£©^{2}}$=1£¬
½âµÃk2=$\frac{1}{8}$£¬½âµÃk=¡À$\frac{\sqrt{2}}{4}$£¬
¹Ê´æÔÚµãP£¨$\frac{\sqrt{3}}{3}$£¬-$\frac{\sqrt{6}}{6}$£©£¬»ò£¨$\frac{\sqrt{3}}{3}$£¬$\frac{\sqrt{6}}{6}$£©£¬
ÔòÓÐÖ±Ïßl£ºy=$\frac{\sqrt{2}}{4}$x-$\frac{\sqrt{6}}{4}$»òy=-$\frac{\sqrt{2}}{4}$x+$\frac{\sqrt{6}}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʹ«Ê½ºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | m¡Ý1 | B£® | m¡Ý1»ò0£¼m£¼1 | C£® | m¡Ý1ÇÒm¡Ù5 | D£® | 0£¼m£¼5ÇÒm¡Ù1 |
A£® | 4$\sqrt{6}$ | B£® | 12 | C£® | 14 | D£® | 24 |
¿ÆÄ¿ | »ù±¾ËØÖÊ | רҵ¼¼ÄÜ | ¼ÆËã»ú | ÀñÒÇ |
ºÏ¸ñµÄ¸ÅÂÊ | $\frac{2}{3}$ | $\frac{3}{4}$ | $\frac{1}{3}$ | $\frac{1}{4}$ |
£¨2£©¼Ç¦Î±íʾÈý¸öÈËÖÐÈ¡µÃ¸´ÊÔµÄ×ʸñµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼¼°ÆÚÍûE¦Î£®