题目内容
【题目】如图,已知点,是以为底边的等腰三角形,点在直线:上.
(1)求边上的高所在直线的方程;
(2)求的面积.
【答案】解:(Ⅰ)由题意可知,E为AB的中点,∴E(3,2),……………………1分
且,……………………………………………………1分,
∴CE:y-2=x-3,即x-y-1=0.………………………………2分
(Ⅱ)由得C(4,3),…………………………………1分
∴|AC|=|BC|=2,AC⊥BC,…………………………………………1分
∴
【解析】
试题分析:
(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;
(2)由,求得,利用两点间的距离公式和三角形的面积公式,即可求得三角形的面积.
试题解析:
(Ⅰ)由题意可知,为的中点,
∴,且,
∴所在直线方程为,
即.
(Ⅱ)由得
∴
∴,
∴
∴
练习册系列答案
相关题目