题目内容
【题目】已知为坐标原点,,,,若.
⑴ 求函数的最小正周期和单调递增区间;
⑵ 将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求函数在上的最小值.
【答案】(1);(2)2
【解析】
(1)由题意得到,进而可得函数的周期和单调增区间;(2)根据图象变换得到,根据的范围得到的取值范围,然后可得的最小值.
(1)由题意,,
所以,
所以函数的最小正周期为,
由,
得,
所以的单调递增区间为.
(2)由(1)得,
将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),得到的图象对应的函数为;再将得到的图象向左平移个单位,得到的图象对应的函数为
,
∴,
∵,
∴,
∴当,即时,有最小值,且,
∴函数在上的最小值为2.
练习册系列答案
相关题目
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |