题目内容
【题目】已知,抛物线: 与抛物线: 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.
(1)若直线与抛物线交于点, ,且,求抛物线的方程;
(2)证明: 的面积与四边形的面积之比为定值.
【答案】(1)(2)见解析
【解析】试题分析:(1)联立直线方程与抛物线方程,根据弦长公式以及韦达定理得等量关系,求出p,(2)先求M坐标,再求直线方程,进而求得A,B,C坐标,即得面积,最后作商.
试题解析:(1)解:由,消去得.
设, 的坐标分别为, ,
则, .
∴ ,∵,∴.
故抛物线的方程为.
(2)证明:由,得或,则.
设直线: ,与联立得.
由,得,∴.
设直线: ,与联立得.
由,得,∴.
故直线: ,直线: ,
从而不难求得, , ,
∴, ,∴的面积与四边形的面积之比为(为定值).
练习册系列答案
相关题目