ÌâÄ¿ÄÚÈÝ
£¨1£©Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬ACÊÇÏÒ£¬¡ÏBACµÄƽ·ÖÏßAD½»¡ÑOÓÚD£¬DE¡ÍAC½»ACÑÓ³¤ÏßÓÚµãE£¬OE½»ADÓÚµãF£®£¨¢ñ£©ÇóÖ¤£ºDEÊÇ¡ÑOµÄÇÐÏߣ»
£¨¢ò£©Èô£¬ÇóµÄÖµ£®
£¨2£©ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨ×ø±êϵ£¬ÒÑÖªÇúÏß
C£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬ÒÑÖª¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßLµÄ²ÎÊý·½³ÌΪ£º£¬Ö±ÏßLÓëÇúÏßC·Ö±ð½»ÓÚM£¬N£®
£¨¢ñ£©Ð´³öÇúÏßCºÍÖ±ÏßLµÄÆÕͨ·½³Ì£»
£¨¢ò£©Èô|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©£¨¢ñ£©Á¬½ÓOD£¬¿ÉµÃ¡ÏOAD=¡ÏOAD=¡ÏDAC£¬¿ÉµÃOD¡ÎAE£¬ÔÙÓÉAE¡ÍDE£¬OD¡ÍDE£¬Ö¤µÃDEÊÇ¡ÑOµÄÇÐÏߣ®
£¨¢ò£©¹ýD×÷DH¡ÍABÓÚH£¬Çó³öcos¡ÏDOH=cos¡ÏCAN==£®ÔÙÓÉ¡÷ADE¡×¡÷ADBÒÔ¼°¡÷AEF¡×¡÷ODF£¬¿ÉµÃ=£®
£¨2£©£¨¢ñ£©°ÑÇúÏßC·½³ÌµÄÁ½±ßͬʱ³ËÒÔ¦Ñ ¿ÉµÃ ¦Ñ2sin2¦È=2a•¦Ñ•cos¦È£¬ÔÙ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½Çó³öËüµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÖ±ÏßLµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬Çó³öËüµÄÆÕͨ·½³Ì£®
£¨¢ò£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë y2=2ax£¬ÔÙÀûÓøùÓëϵÊýµÄ¹Øϵ£¬Çó³öt1+t2 ºÍt1•t2 µÄÖµ£¬´úÈë|MN|2=|PM||PN|£¬Çó³öaµÄÖµ£®
½â´ð£º½â£º£¨1£©£¨¢ñ£©Ö¤Ã÷£ºÁ¬½ÓOD£¬¿ÉµÃ¡ÏOAD=¡ÏOAD=¡ÏDAC£¬¡àOD¡ÎAE£®
ÓÖ AE¡ÍDE£¬OD¡ÍDE£¬¡àDEÊÇ¡ÑOµÄÇÐÏߣ®-----£¨6·Ö£©
£¨¢ò£©¹ýD×÷DH¡ÍABÓÚH£¬ÔòÓСÏDOH=¡ÏCAN£¬¡àcos¡ÏDOH=cos¡ÏCAN==£®------£¨6·Ö£©
Éè OD=5x£¬Ôò AB=10x£¬OH=3x£¬DH=4x£®
¡àAH=8x£¬AD2=80x2£¬-----£¨8·Ö£©
ÓÉ¡÷ADE¡×¡÷ADB¿ÉµÃ AD2=AE•AB=AE•10x£¬¡àAE=8x£®
ÓÖ¡÷AEF¡×¡÷ODF£¬=£®------£¨12·Ö£©
£¨2£©½â£º£¨¢ñ£©ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a•¦Ñ•cos¦È£¬¼´ y2=2ax£®
Ö±ÏßLµÄ²ÎÊý·½³Ì £¬Á½Ê½Ïà¼õ¿ÉµÃ y=x-2£®-------£¨6·Ö£©
£¨¢ò£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ £¨tΪ²ÎÊý£©£¬
´úÈë y2=2axµÃµ½ £¬
ÔòÓÐ t1+t2=2£¨4+a£©£¬t1•t2=8£¨4+a£©£¬-----------£¨8·Ö£©
ÒòΪ|MN|2=|PM||PN|£¬ËùÒÔ=-4 t1•t2=t1•t2£¬
½âµÃ a=1£®-----------£¨12·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬µÈ±ÈÊýÁеĶ¨ÒåºÍÐÔÖÊ£¬Ô²µÄÇÐÏßÅж¨¶¨ÀíµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
£¨¢ò£©¹ýD×÷DH¡ÍABÓÚH£¬Çó³öcos¡ÏDOH=cos¡ÏCAN==£®ÔÙÓÉ¡÷ADE¡×¡÷ADBÒÔ¼°¡÷AEF¡×¡÷ODF£¬¿ÉµÃ=£®
£¨2£©£¨¢ñ£©°ÑÇúÏßC·½³ÌµÄÁ½±ßͬʱ³ËÒÔ¦Ñ ¿ÉµÃ ¦Ñ2sin2¦È=2a•¦Ñ•cos¦È£¬ÔÙ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½Çó³öËüµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÖ±ÏßLµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬Çó³öËüµÄÆÕͨ·½³Ì£®
£¨¢ò£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈë y2=2ax£¬ÔÙÀûÓøùÓëϵÊýµÄ¹Øϵ£¬Çó³öt1+t2 ºÍt1•t2 µÄÖµ£¬´úÈë|MN|2=|PM||PN|£¬Çó³öaµÄÖµ£®
½â´ð£º½â£º£¨1£©£¨¢ñ£©Ö¤Ã÷£ºÁ¬½ÓOD£¬¿ÉµÃ¡ÏOAD=¡ÏOAD=¡ÏDAC£¬¡àOD¡ÎAE£®
ÓÖ AE¡ÍDE£¬OD¡ÍDE£¬¡àDEÊÇ¡ÑOµÄÇÐÏߣ®-----£¨6·Ö£©
£¨¢ò£©¹ýD×÷DH¡ÍABÓÚH£¬ÔòÓСÏDOH=¡ÏCAN£¬¡àcos¡ÏDOH=cos¡ÏCAN==£®------£¨6·Ö£©
Éè OD=5x£¬Ôò AB=10x£¬OH=3x£¬DH=4x£®
¡àAH=8x£¬AD2=80x2£¬-----£¨8·Ö£©
ÓÉ¡÷ADE¡×¡÷ADB¿ÉµÃ AD2=AE•AB=AE•10x£¬¡àAE=8x£®
ÓÖ¡÷AEF¡×¡÷ODF£¬=£®------£¨12·Ö£©
£¨2£©½â£º£¨¢ñ£©ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a•¦Ñ•cos¦È£¬¼´ y2=2ax£®
Ö±ÏßLµÄ²ÎÊý·½³Ì £¬Á½Ê½Ïà¼õ¿ÉµÃ y=x-2£®-------£¨6·Ö£©
£¨¢ò£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ £¨tΪ²ÎÊý£©£¬
´úÈë y2=2axµÃµ½ £¬
ÔòÓÐ t1+t2=2£¨4+a£©£¬t1•t2=8£¨4+a£©£¬-----------£¨8·Ö£©
ÒòΪ|MN|2=|PM||PN|£¬ËùÒÔ=-4 t1•t2=t1•t2£¬
½âµÃ a=1£®-----------£¨12·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬µÈ±ÈÊýÁеĶ¨ÒåºÍÐÔÖÊ£¬Ô²µÄÇÐÏßÅж¨¶¨ÀíµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿