题目内容

已知△ABC中,
AB
AC
|
AB
-
AC
|=2
,点M是线段BC(含端点)上的一点,且
AM
•(
AB
+
AC
)=1
,则|
AM
|
的取值范围是______.
如图所示,建立直角坐标系.
设B(0,c),C(b,0),D(b,c),M(x,y).
|
AB
-
AC
|=|
CB
|
=2,
∴b2+c2=4.
AB
+
AC
=
AD

AM
•(
AB
+
AC
)
=
AM
AD
=(x,y)•(b,c)=bx+cy=1.
|
AM
|=
x2+y2

∵(x2+y2)(b2+c2)≥(bx+cy)2
∴4(x2+y2)≥1,
x2+y2
1
2
,即|
AM
|≥
1
2

x
b
+
y
c
=1

∴1=(bx+cy)(
x
b
+
y
c
)
=x2+y2+
cxy
b
+
bxy
c

∵b>0,c>0,x≥0,y≥0.
∴x2+y2≤1,即
x2+y2
≤1
.(当且仅当x=0或y=0时取等号).
综上可知:
1
2
≤|
AM
|≤1

故答案为:[
1
2
,1]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网