题目内容
函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_ST/1.png)
(I)求出点P的坐标;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)将函数y=f(x)的图象向右平移2个单位后得到函数y=g(x)的图象,试求函数h(x)=f(x)•g(x)的单调递增区间.试求函数h(x)=f(x)•g(x)的单调递增区间.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_ST/images2.png)
【答案】分析:(I)由cos∠POM=
得sin∠POM=
,|OP|=
,利用三角函数的定义可求得点P的坐标;
(Ⅱ)由(I)得A=2,
T=3-1=2,可求得ω,再由
×1+φ=
可求得φ,从而可得函数f(x)的解析式;
(Ⅲ)由(Ⅱ)知f(x)=2sin(
x+
),而g(x)=f(x-2)=2sin(
x-
),可求得h(x)=f(x)g(x)=-2cos
x,利用余弦函数的单调性可求得h(x)的单调增区间.
解答:解:(I)由cos∠POM=
得sin∠POM=
.
∵|OP|=
,
=
,
=
,
∴x=1,y=2,…(2分)
∴P(1,2),…(3分)
(II) 设函数f(x)的最小正周期为T,
由(I)得A=2,
∵M(3,0)为曲线上的一个零点,
由图知
T=3-1=2,T=8,
∴ω=
,…(4分)
又由图得:
×1+φ=
,
∴φ=
,
∴f(x)=2sin(
x+
)…(6分)
(Ⅲ)g(x)=f(x-2)=2sin(
x-
),…(8分)
h(x)=f(x)g(x)=4sin(
x+
)sin(
x-
)=2(
-
)=-2cos
x…(10分)
由2kπ<
x<π+2kπ,k∈Z得4k<x<2+4k,k∈Z,
∴h(x)的单调增区间为(4k,2+4k)(k∈Z).(12分)
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查倍角公式与余弦函数的单调性的综合应用,属于难题.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/2.png)
(Ⅱ)由(I)得A=2,
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/5.png)
(Ⅲ)由(Ⅱ)知f(x)=2sin(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/10.png)
解答:解:(I)由cos∠POM=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/12.png)
∵|OP|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/13.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/14.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/15.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/17.png)
∴x=1,y=2,…(2分)
∴P(1,2),…(3分)
(II) 设函数f(x)的最小正周期为T,
由(I)得A=2,
∵M(3,0)为曲线上的一个零点,
由图知
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/18.png)
∴ω=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/19.png)
又由图得:
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/20.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/21.png)
∴φ=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/22.png)
∴f(x)=2sin(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/24.png)
(Ⅲ)g(x)=f(x-2)=2sin(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/26.png)
h(x)=f(x)g(x)=4sin(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/28.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/29.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/31.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/32.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/33.png)
由2kπ<
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174932213707328/SYS201311031749322137073019_DA/34.png)
∴h(x)的单调增区间为(4k,2+4k)(k∈Z).(12分)
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查倍角公式与余弦函数的单调性的综合应用,属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201405/178/cdd72ded.png)
A、
| ||||
B、
| ||||
C、2 | ||||
D、
|