题目内容

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.
分析:(1)由函数的最值求出A,由周期求出ω,从而得到函数的解析式为f(x)=2sin(2x-
π
6
)+1.令
π
2
+2kπ≤2x-
π
6
2
+2kπ,k∈Z
,求得x的范围,即可求得f(x)的单调减区间.
(2)由 f(
α
2
)=2求得sin(α-
π
6
)=
1
2
,再由 α-
π
6
的范围求得 α-
π
6
的值,可得a的值.
解答:解:(Ⅰ)∵函数f(x)的最大值是3,∴A+1=3,即A=2.-----(1分)
∵函数图象的相邻两条对称轴之间的距离为
π
2
,∴最小正周期T=π,∴ω=2.------(3分)
所以f(x)=2sin(2x-
π
6
)+1.------(4分)
π
2
+2kπ≤2x-
π
6
2
+2kπ,k∈Z
,即 
π
3
+kπ≤x≤
6
+kπ,k∈Z

∵x∈[0,π],∴f(x)的单调减区间为 [
π
3
6
]
.-----(8分)
(Ⅱ)∵f(
α
2
)=2sin(α-
π
6
)+1=2,即 sin(α-
π
6
)=
1
2
,------(9分)
∵0<α<
π
2
,∴-
π
6
<α-
π
6
π
3
,∴α-
π
6
=
π
6
,∴α=
π
3
.------(12分)
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,正弦函数的单调性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网