题目内容

函数
(1)时,求最小值;
(2)若是单调减函数,求取值范围.

(1)f(x)最小值是1;(2)a≤.

解析试题分析:(1)可以对f(x)求导,从而得到f(x)的单调性,即可求得f(x)的最小值;(2)根据条件“若f(x)在是单调减函数”,说明f”(x)<0在恒成立,而f’(x)=,参变分离后原题等价于求使恒成立的a的取值范围,从而把问题转化为求函数上的最小值,而a的取值范围即a≤.
(1)
, 
∴f(x)在(0,1)单减,在单增,有最小值1    6分
(2)为减函数,则,即,当恒成立,∴最小值       9分

     12分
考点:1、利用函数的导函数讨论函数的单调性;2、恒成立问题的处理方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网