题目内容
【题目】已知函数f(x)=2sin(ωx),其中常数ω>0
(1)令ω=1,判断函数的奇偶性,并说明理由;
(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.
【答案】(1)F(x)既不是奇函数,也不是偶函数(2)21或20
【解析】
(1)特值法:ω=1时,写出f(x)、F(x),求出F()、F(),结合函数奇偶性的定义可作出正确判断;
(2)根据图象平移变换求出g(x),令g(x)=0可得g(x)可能的零点,而[a,a+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得g(x)在[a,a+10π]上零点个数的所有可能值.
(1)f(x)=2sinx,
F(x)=f(x)+f(x)=2sinx+2sin(x)=2(sinx+cosx),
F()=2,F()=0,F()≠F(),F()≠﹣F(),
所以,F(x)既不是奇函数,也不是偶函数.
(2)f(x)=2sin2x,
将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x)+1的图象,所以g(x)=2sin2(x)+1.
令g(x)=0,得x=kπ或x=kπ(k∈z),
因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,
当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.
综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.
【题目】已知圆:与直线:,动直线过定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于、两点,点M是PQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.
【题目】某机构为了调查某市同时符合条件与(条件:营养均衡,作息规律;条件:经常锻炼,劳逸结合)的高中男生的体重(单位:)与身高(单位: )是否存在较好的线性关系,该机构搜集了位满足条件的高中男生的数据,得到如下表格:
身高/ | ||||||
体重/ |
根据表中数据计算得到关于的线性回归方程对应的直线的斜率为.
(1)求关于的线性回归方程(精确到整数部分);
(2)已知,且当时,回归方程的拟合效果较好。试结合数据,判断(1)中的回归方程的拟合效果是否良好?
(3)该市某高中有位男生同时符合条件与,将这位男生的身高(单位:)的数据绘制成如下的茎叶图。利用(1)中的回归方程估计这位男生的体重未超过的所有男生体重(单位:)的平均数(结果精确到整数部分).