题目内容
【题目】已知函数.
(1)求证:函数有唯一零点;
(2)若对任意,恒成立,求实数的取值范围.
【答案】(1)见解析;(2).
【解析】试题分析:(1)求出 ,先证明在区间上为增函数,又,,所以在区间上恰有一个零点,而在上恒成立,在上无零点,从而可得结果;(2))设的零点为,即. 原不等式可化为,令若,可得,等式左负右正不相等,若,等式左正右负不相等,只能,,即求所求.
试题解析:(1) ,
易知在上为正,因此在区间上为增函数,又,
因此,即在区间上恰有一个零点,
由题可知在上恒成立,即在上无零点,
则在上存在唯一零点.
(2)设的零点为,即. 原不等式可化为,
令,则,由(1)可知在上单调递减,
在上单调递增,故只求,,设,
下面分析,设,则,
可得,即
若,等式左负右正不相等,若,等式左正右负不相等,只能.
因此,即求所求.
【题目】已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,逦过分层抽样获得12名员工每天睡眠的时间,数据如下表(单位:小时)
甲部门 | 6 | 7 | 8 | ||
乙部门 | 6 | 6.5 | 7 | 7.5 | |
丙部门 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求该单位乙部门的员工人数;
(2)若将每天睡眠时间不少于7小时视为睡眠充足,现从该单位任抽取1人,估计抽到的此人为睡眠充足者的概率;
(3)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B.假设所有员工睡眠的时间相互独立.求A的睡眠时间不少于B的睡眠时间的概率.
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.