题目内容
19.已知各项均不相等的等差数列{an}的前五项和S5=20,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式;
(2)设Tn为数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,若存在n∈N*,使得Tn-λan+1≥0成立.求实数λ的取值范围.
分析 (1)设数列{an}的公差为d,运用等差数列的求和公式和等比数列的性质,解方程可得a1=2,d=1,再由等差数列的通项即可得到;
(2)运用裂项相消求和,求得Tn,再由参数分离和基本不等式即可得到所求范围.
解答 解:(1)设数列{an}的公差为d,由已知得$\left\{\begin{array}{l}{{S}_{5}=20}\\{{{a}_{3}}^{2}={a}_{1}{a}_{7}}\end{array}\right.$
即为$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=20}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}_{1}+2d=4}\\{2{d}^{2}={a}_{1}d}\end{array}\right.$,由d≠0,即有$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$,
故an=2+n-1=n+1;
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$
∴${T_n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$,
∵存在n∈N*,使得Tn-λan+1≥0成立,
∴存在n∈N*,使得$\frac{n}{2(n+2)}$-λ(n+2)≥0成立,
即λ≤$\frac{n}{2(n+2)^{2}}$有解,
即有λ≤[$\frac{n}{2(n+2)^{2}}$]max,
而$\frac{n}{2(n+2)^{2}}$=$\frac{1}{2(n+\frac{4}{n}+4)}$≤$\frac{1}{2(2\sqrt{n•\frac{4}{n}}+4)}$=$\frac{1}{16}$,n=2时取等号
∴$λ≤\frac{1}{16}$.
点评 本题考查等差数列的通项和求和公式的运用,同时考查等比数列的性质,以及数列的求和方法:裂项相消求和,运用参数分离和基本不等式是解题的关键.
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 3 |