题目内容
【题目】已知抛物线的准线与轴交于点,过点做圆的两条切线,切点为.
(1)求抛物线的方程;
(2)若直线是讲过定点的一条直线,且与抛物线交于两点,过定点作的垂线与抛物线交于两点,求四边形面积的最小值.
【答案】(1).(2).
【解析】试题分析:(1)求得K的坐标,圆的圆心和半径,运用对称性可得MR的长,由勾股定理和锐角的三角函数,可得CK=6,再由点到直线的距离公式即可求得p=2,进而得到抛物线方程;(2)设出直线方程,运用弦长公式和四边形的面积公式,换元整理,结合基本不等式,即可求得最小值.
解析:
(1)由已知得设与轴交于点,由圆的对称性可知, .
于是,所以,所以,所以.故抛物线的方程为.
(2)设直线的方程为,设,
联立得,则.
设,同理得,
则四边形的面积
令,则
是关于的增函数,
故,当且仅当时取得最小值.
练习册系列答案
相关题目
【题目】“累积净化量()”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为时对颗粒物的累积净化量,以克表示.根据《空气净化器》国家标准,对空气净化器的累计净化量()有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共2000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中.按照均匀分组,其中累积净化量在的所有数据有: 和,并绘制了如下频率分布直方图:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.