题目内容
某车间共有名工人,随机抽取
名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取
人,求恰有
名优秀工人的概率.
(1)22
(2)4
(3)10:33
解析试题分析:解:(1)由题意可知,样本均值 3分
(2)样本6名个人中日加工零件个数大于样本均值的工人共有2名,
可以推断该车间12名工人中优秀工人的人数为:
7分
(3)从该车间12名工人中,任取2人有
种方法,
而恰有1名优秀工人有
所求的概率为:
12分
考点:古典概型
点评:主要是考查了古典概型概率的运用,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量![]() | 1≤n≤3 | 4≤n≤6 | 7≤n≤9 | 10≤n≤12 | n≥13 |
顾客数(人) | ![]() | 20 | 10 | 5 | ![]() |
结算时间(分钟/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)确定
![](http://thumb.zyjl.cn/pic5/tikupic/68/2/ctfvs.png)
![](http://thumb.zyjl.cn/pic5/tikupic/f7/4/lpjwj1.png)
(2)若将频率视为概率,求顾客一次购物的结算时间
![](http://thumb.zyjl.cn/pic5/tikupic/df/8/fmmb92.png)
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
组号 | 分组 | 频数 | 频率 |
第一组 | [160,165) | 5 | 0.05 |
第二组 | [165,170) | 35 | 0.35 |
第三组 | [170,175) | 30 | a |
第四组 | [175,180) | b | 0.2 |
第五组 | [180,185) | 10 | 0.1 |
![](http://thumb.zyjl.cn/pic5/tikupic/d3/b/wcncr2.png)
(Ⅱ)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;考生李翔的笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(Ⅲ)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为
![](http://thumb.zyjl.cn/pic5/tikupic/fa/c/1gvwn3.png)
![](http://thumb.zyjl.cn/pic5/tikupic/fa/c/1gvwn3.png)
为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
处罚金额x(元) | 0 | 5 | 10 | 15 | 20 |
会闯红灯的人数y | 80 | 50 | 40 | 20 | 10 |
(Ⅰ)求这两种金额之和不低于20元的概率;
(Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.