题目内容

【题目】是关于的方程的两个虚数根,若在复平面上对应的点构成直角三角形,那么实数_______________.

【答案】

【解析】

由题意,可设αa+bi则由实系数一元二次方程虚根成对定理可得βabi,且mn为实数,b0.由根与系数的关系得到ab的关系,由αβ0对应点构成直角三角形,求得到实数m的值

αa+bi则由实系数一元二次方程虚根成对定理可得βabi,且mn为实数,n0

由根与系数的关系可得α+β2a=﹣2αβa2+b2m

m0

a=﹣1mb2+1

∵复平面上αβ0对应点构成直角三角形,

αβ在复平面对应的点分别为AB,则OAOB,所以b21,所以m1+12;,

故答案为:2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网