ÌâÄ¿ÄÚÈÝ
16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®£¨¢ñ£©Ð´³ö¡ÑCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©PΪֱÏßlÉÏÒ»¶¯µã£¬µ±Pµ½Ô²ÐÄCµÄ¾àÀë×îСʱ£¬ÇóPµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®»¯Îª¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬°Ñ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£»£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ|PC|=$\sqrt{{t}^{2}+12}$£¬ÔÙÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®
¡à¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬»¯Îªx2+y2=$2\sqrt{3}y$£¬
Å䷽Ϊ${x}^{2}+£¨y-\sqrt{3}£©^{2}$=3£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®
¡à|PC|=$\sqrt{£¨3+\frac{1}{2}t£©^{2}+£¨\frac{\sqrt{3}}{2}t-\sqrt{3}£©^{2}}$=$\sqrt{{t}^{2}+12}$¡Ý2$\sqrt{3}$£¬
Òò´Ëµ±t=0ʱ£¬|PC|È¡µÃ×îСֵ2$\sqrt{3}$£®´ËʱP£¨3£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄÓ¦Óá¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | -i | B£® | i | C£® | 1 | D£® | -1 |
A£® | £¨$\frac{7}{4}$£¬+¡Þ£© | B£® | £¨-¡Þ£¬$\frac{7}{4}$£© | C£® | £¨0£¬$\frac{7}{4}$£© | D£® | £¨$\frac{7}{4}$£¬2£© |