题目内容
【题目】已知椭圆的焦距为2,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线与椭圆相交于两点,记面积的最大值为,证明:
【答案】(1)(2)见解析
【解析】【试题分析】(1)依据题设条件建立方程组求解;(2)先建立直线的方程。然后与椭圆方程联立,再借助坐标之间的关系建立关于三角形面积的函数关系,通过计算进行推证:
(Ⅰ)解:由题意,得椭圆的半焦距,右焦点,上顶点,所以直线的斜率,解得,由,得,所以椭圆的方程为.
(Ⅱ)证明:设直线的方程为,其中, ,由方程组得 所以
,于是有 ,所以
,因为原点到直线的距离 ,
所以
当时, ,所以当时的最大值,验证知成立;
当时,所以当时的最大值
验证知成立;所以
练习册系列答案
相关题目
【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
169 | 178 | 166 | 175 | 180 | |
75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素满足:,且时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.