题目内容
【题目】已知曲线的极坐标方程为,以极点为原点,极轴所在直线为轴建立直角坐标系,过点作倾斜角为()的直线交曲线于、两点.
(1)求曲线的直角坐标方程,并写出直线的参数方程;
(2)过点的另一条直线与垂直,且与曲线交于,两点,求的最小值.
【答案】(1);(为参数) ;(2)28.
【解析】
(1)利用公式法对极坐标方程和直角坐标方程互化,根据点和倾斜角写出直线的参数方程.
(2)两条直线的参数方程分别与曲线的直角坐标方程联立,由的几何意义和韦达定理,即可求得结果.
(1)由得,
∴为曲线的直角坐标方程,
由作倾斜角为的直线的参数方程为:(为参数).
(2)将直线的参数方程代入的直角坐标方程得:
,
显然,设,两点对应的参数分别为,,
则,∴,
由于直线与垂直,可设直线的参数方程为:(为参数)
与曲线的直角坐标方程联立同理可得:
,
∴.
当或者时,取得最小值为.
【题目】盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的、、三种样式,且每个盲盒只装一个.
(1)若每个盲盒装有、、三种样式玩偶的概率相同.某同学已经有了样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?
(2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有的人购买了该款盲盒,在这些购买者当中,女生占;而在未购买者当中,男生女生各占.请根据以上信息填写下表,并分析是否有的把握认为购买该款盲盒与性别有关?
女生 | 男生 | 总计 | |
购买 | |||
未购买 | |||
总计 |
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:
周数 | 1 | 2 | 3 | 4 | 5 | 6 |
盒数 | 16 | ______ | 23 | 25 | 26 | 30 |
由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1、3周数据进行检验.
①请用4、5、6周的数据求出关于的线性回归方程;
(注:,)
②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
③如果通过②的检验得到的回归直线方程可靠,我们可以认为第2周卖出的盒数误差也不超过2盒,请你求出第2周卖出的盒数的可能取值;如果不可靠,请你设计一个估计第2周卖出的盒数的方案.