题目内容
【题目】已知椭圆的离心率为,且过点.
(1)求椭圆C的标准方程;
(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.
【答案】(1)(2)点在以为直径的圆上
【解析】
(1)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的标准方程;
(2)设点,,则,,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上.
(1)由题意可知,,解得,
椭圆的标准方程为:.
(2)设点,,则,,
直线的斜率为,
直线的方程为:,
令得,,
点的坐标为,,
点的坐标为,,
,,
又点,在椭圆上,
,,
,
点在以为直径的圆上.
练习册系列答案
相关题目