题目内容
【题目】已知函数,其中e是自然对数的底数,.
(1)求函数的单调区间;
(2)设,讨论函数零点的个数,并说明理由.
【答案】(1)增区间是,减区间是.(2)见解析
【解析】
(1)求导函数,分别令,解出不等式,即可得到函数的单调区间;
(2)由 得方程 ,显然 为此方程的一个实数解.当时, 方程可化简为,设函数利用导数得到 的最小值, 因为,再对讨论,得到函数的零点个数.
解:(1)因为,所以.
由得;由得.
所以由的增区间是,减区间是.
(2)因为.
由,得或.
设,又即不是的零点,
故只需再讨论函数零点的个数.
因为,
所以当时,单调递减;
当时,单调递增.
所以当时,取得最小值.
①当即时,无零点;
②当即时, 有唯一零点;
③当,即时,因为,
所以在上有且只有一个零点.
令则.
设,
所以在上单调递增,
所以,都有.
所以.
所以在上有且只有一个零点.
所以当时,有两个零点
综上所述,当时,有一个零点;
当时,有两个零点;
当时,有三个零点.
练习册系列答案
相关题目
【题目】已知x与y之间的几组数据如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为,,,对应的相关系数分别为,,,下列结论中错误的是( )
参考公式:线性回归方程中,其中,.相关系数.
A.三条回归直线有共同交点B.相关系数中,最大
C.D.