题目内容

17.若实数x,y满足约束条件$\left\{\begin{array}{l}1≤x+y≤3\\-1≤x-y≤1\end{array}\right.$,则z=2x+y的取值范围是(  )
A.[0,6]B.[1,6]C.[1,5]D.[0,5]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.

解答 解:作出不等式组对应的平面区域如图:
设z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A(0,1)时,直线的截距最小,
此时z最小,为z=0+1=1,
当直线y=-2x+z经过点C时,直线的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
即C(2,1),此时z=2×2+1=5,
即1≤z≤5,
故选:C.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网