题目内容
17.若实数x,y满足约束条件$\left\{\begin{array}{l}1≤x+y≤3\\-1≤x-y≤1\end{array}\right.$,则z=2x+y的取值范围是( )A. | [0,6] | B. | [1,6] | C. | [1,5] | D. | [0,5] |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.
解答 解:作出不等式组对应的平面区域如图:
设z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A(0,1)时,直线的截距最小,
此时z最小,为z=0+1=1,
当直线y=-2x+z经过点C时,直线的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
即C(2,1),此时z=2×2+1=5,
即1≤z≤5,
故选:C.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关题目
8.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )
A. | f(x)=x2 | B. | f(x)=sinx | C. | f(x)=ex | D. | f(x)=$\frac{1}{x}$ |
12.为了计算1×3×5×7×…×21的结果,设计如图所示的程序框图,则判断框内可填入的条件是( )
A. | n≤9 | B. | n≤10 | C. | n≤11 | D. | n≤12 |
2.已知集合A={x|$\frac{x-1}{x+2}≥0$,x∈R},则∁RA=( )
A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
6.如图所示,在复平面内,点A对应的复数为z,则复数z2等于( )
A. | 3-4i | B. | 3+4i | C. | -3+4i | D. | -3-4i |
7.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(-1,1),则2$\overrightarrow{a}$-$\overrightarrow{b}$=( )
A. | (3,7) | B. | (3,9) | C. | (5,7) | D. | (5,9) |