ÌâÄ¿ÄÚÈÝ
15£®É躯Êýf£¨x£©=ex-ax£¬ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬a¡ÊR£®£¨1£©Èôº¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬ÇóÇÐÏßlµÄ·½³Ì£»
£¨2£©¼Çº¯Êýy=f£¨x£©Í¼ÏóΪÇúÏßC£¬ÉèµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¨x1£¼x2£©ÊÇÇúÏßCÉϲ»Í¬µÄÁ½¶¨µã£¬µãMΪÏ߶ÎABµÄÖе㣬¹ýµãM×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãN£¬¼ÇÖ±ÏßABµÄбÂÊΪk£®Èôx1=-x2£¬ÊÔÎÊ£ºÇúÏßCÔÚµãN´¦µÄÇÐÏßÊÇ·ñƽÐÐÓÚÖ±ÏßAB£¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Çóµ¼Êý£¬ÀûÓú¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬Çó³öa£¬¼´¿ÉÇóÇÐÏßlµÄ·½³Ì£»
£¨2£©Éè³öÏ߶ÎABµÄÖеãMµÄ×ø±ê£¬µÃµ½NµÄ×ø±ê£¬ÓÉÁ½µãʽÇó³öABµÄбÂÊ£¬ÔÙÓɵ¼ÊýµÃµ½ÇúÏßC¹ýNµãµÄÇÐÏßµÄбÂÊ£¬ÓÉбÂÊÏàµÈµÃ$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a=1-a£¬¹¹Ô캯Êý£¬È·¶¨µ¥µ÷ÐÔ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºf¡ä£¨x£©=ex-a£®----£¨1·Ö£©
£¨1£©Óɺ¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬
¼´f¡ä£¨ln2£©=tan0=0£¬
Ôòeln2-a=0£¬¼´a=2£¬---£¨3·Ö£©
ÓÖf£¨ln2£©=2-2ln2£¬
¹ÊÇÐÏßlµÄ·½³ÌΪy=2-2ln2£»----£¨5·Ö£©
£¨2£©ÓÉÌâÒâÖªx1=-x2£¬k=$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$-a=$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a£¬----£¨8·Ö£©
µãNµÄºá×ø±ê$\frac{{x}_{1}+{x}_{2}}{2}$=0Ϊ£¬
ÇúÏßCÔÚµãN´¦ÇÐÏßбÂÊk¡ä=f¡ä£¨0£©=1-a£¬----£¨10·Ö£©
¼ÙÉèÇúÏßCÔÚµãN´¦µÄÇÐÏßƽÐÐÓÚÖ±ÏßAB£¬
Ôò$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a=1-a£¬¼´${e}^{{x}_{2}}$-$\frac{1}{{e}^{{x}_{2}}}$-2x2=0£¬ÆäÖÐx2£¾0£¬----£¨12·Ö£©
Éèg£¨x£©=ex-$\frac{1}{{e}^{x}}$-2x£¨x£¾0£©£¬g¡ä£¨x£©=£©=ex+$\frac{1}{{e}^{x}}$-2¡Ý0£¬
Ôòg£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬Ôòg£¨x£©£¾g£¨0£©=0£¬----£¨14·Ö£©
¹Ê${e}^{{x}_{2}}$-$\frac{1}{{e}^{{x}_{2}}}$-2x2=0²»³ÉÁ¢£¬
Òò´ËÇúÏßCÔÚµãN´¦µÄÇÐÏß²»Æ½ÐÐÓÚÖ±ÏßAB£®----£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÀûÓõ¼ÊýÇóº¯ÊýµÄÇÐÏß·½³Ì£¬ÑµÁ·ÁËÀûÓù¹Ô캯Êý·¨Ö¤Ã÷ÎÊÌ⣬ÊÇѹÖáÌ⣮
A£® | -$\frac{\sqrt{5}}{3}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{1}{3}$ | D£® | -$\frac{2}{3}$ |
A£® | 100ÖÖ | B£® | 110ÖÖ | C£® | 120ÖÖ | D£® | 180ÖÖ |