题目内容
在四棱锥P-ABCD中,侧面PDC是边长2的正三角形且与底面ABCD垂直,底面ABCD是面积为2
的菱形,∠ADC为锐角.
(1)求证:PA⊥CD
(2)求二面角P-AB-D的大小.
3 |
(1)求证:PA⊥CD
(2)求二面角P-AB-D的大小.
(Ⅰ)过P作PE⊥CD于E连接AE
∵侧面PDC⊥底面ABCD,PE?侧面PDC,且PE⊥CD,
∴PE⊥底面ABCD
∵2×
AD•DCsin∠ADE=2
∴∠ADC=
故△ADC是边长为2的等边三角形
∵E为DC的中点,∴AE⊥CD
∴PA⊥CD
(Ⅱ)∵PA⊥CD,AE⊥CD,CD∥AB,∴PA⊥AB.AE⊥AB,
∴∠PAE就是二面角P-AB-D的平面角
∵△ADC和△PDC都是边长为2的正三角形,
∴PE=AE,又∵PE⊥AE,
∴∠APE=45°即二面角P-AB-D的大小为45°.
∵侧面PDC⊥底面ABCD,PE?侧面PDC,且PE⊥CD,
∴PE⊥底面ABCD
∵2×
1 |
2 |
3 |
∴∠ADC=
π |
3 |
故△ADC是边长为2的等边三角形
∵E为DC的中点,∴AE⊥CD
∴PA⊥CD
(Ⅱ)∵PA⊥CD,AE⊥CD,CD∥AB,∴PA⊥AB.AE⊥AB,
∴∠PAE就是二面角P-AB-D的平面角
∵△ADC和△PDC都是边长为2的正三角形,
∴PE=AE,又∵PE⊥AE,
∴∠APE=45°即二面角P-AB-D的大小为45°.
练习册系列答案
相关题目