题目内容
袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,记为摸出两球中白球的个数,
求的期望.
(1)两球颜色不同的概率是(2)摸出白球个数的期望是。
解析试题分析:(1)记 “摸出一球,放回后再摸出一个球,两球颜色不同”为事件A,
摸出一球得白球的概率为, 摸出一球得黑球的概率为, 3分
P(A)=×+×=
答:两球颜色不同的概率是 6分
(2)由题知可取0,1,2, 依题意得 7分
10分
则。
答: 摸出白球个数的期望是。. 12分
考点:随机变量的分布列及其数学期望,排列组合计算。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。本题对计算能力要求不太高,关键是理解分布列及数学期望的计算方法。
练习册系列答案
相关题目
有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表
根据表中数据,你有多大把握认为成绩及格与班级有关?
附表:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
某商店试销某种商品,获得如下数据:
日销售量(件) | 0 | 1 | 2 | 3 |
概率 | 0.05 | 0.25 | 0.45 | 0.25 |
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。