题目内容
【题目】为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为ξ,求ξ的分布列和数学期望Eξ.
【答案】
(1)解:甲班的样本中有放回的随机抽取2个数据,共有25种抽法,其中只有一个优秀成绩,共有12种抽法,
∴其中只有一个优秀成绩的概率为
(2)解:ξ=0,1,2,3,则
P(ξ=0)= = ,P(ξ=1)= + = ,
P(ξ=2)= + = ,P(ξ=3)= = ,
∴ξ的分布列
ξ | 0 | 1 | 2 | 3 |
P |
∴Eξ=0× +1× +2× +3× =1.2
【解析】(1)利用古典概型公式求解;(2)根据题意,得到变量的可能取值,结合变量对应的事件写出变量的概率,根据变量和概率的值写出分布列,做出期望值.
【考点精析】解答此题的关键在于理解茎叶图的相关知识,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.
练习册系列答案
相关题目