题目内容
【题目】如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的高;
(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?
【答案】(1)h=3-3x(2)当 时,它的侧面积最大为π
【解析】
(1)利用圆锥轴截面的特征可得圆柱的高h可表示为h=3-3x.
(2)由题意可得S圆柱侧=6π(x-x2),利用二次函数的性质可得当圆柱的底面半径为时,它的侧面积最大为π.
(1)设所求的圆柱的底面半径为x,它的轴截面如图,
BO=1,PO=3,圆柱的高为h,
由图,得=,即h=3-3x.
(2)∵S圆柱侧=2πhx=2π(3-3x)x=6π(x-x2),
当x=时,圆柱的侧面积取得最大值为π.
∴当圆柱的底面半径为时,它的侧面积最大为π.
练习册系列答案
相关题目