题目内容
3.已知数列{an}是等比数列,Sn是前n项和,且S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.(1)求数列{an}的通项公式;
(2)求前8项和.
分析 (1)由S6≠2S3,可得q≠1,由S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.利用等比数列的前n项和公式可得$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{3})}{1-q}=\frac{7}{2}}\\{\frac{{a}_{1}(1-{q}^{6})}{1-q}=\frac{63}{2}}\end{array}\right.$,解得q,a1.即可得出.
(2)利用等比数列的前n项和公式即可得出.
解答 解:(1)∵S6≠2S3,∴q≠1,
∵S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.
∴$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{3})}{1-q}=\frac{7}{2}}\\{\frac{{a}_{1}(1-{q}^{6})}{1-q}=\frac{63}{2}}\end{array}\right.$,解得q=2,a1=$\frac{1}{2}$.
∴an=$\frac{1}{2}×{2}^{n-1}$=2n-2.
(2)S8=$\frac{\frac{1}{2}({2}^{8}-1)}{2-1}$=$\frac{255}{2}$.
点评 本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.设f(x)是定义在R上的函数,其函数为f′(x),若f(x)+f′(x)<1,f(0)=2015,则不等式exf(x)-ex>2014(其中e为自然对数的底数)的解集为( )
A. | (2014,+∞) | B. | (-∞,0)∪(2014,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-∞,0) |
15.点P(a,3)到直线4x+3y-1=0的距离为4,且在直线2x+y-3=0的下方区域内,则a=( )
A. | -3 | B. | 3 | C. | 7 | D. | -7 |